Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 7(62): eabn6522, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080900

RESUMO

An autonomous robotic laparoscopic surgical technique is capable of tracking tissue motion and offers consistency in suturing for the anastomosis of the small bowel.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Robótica , Anastomose Cirúrgica , Robótica/instrumentação , Técnicas de Sutura
2.
IEEE Trans Biomed Eng ; 69(6): 1995-2005, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34882540

RESUMO

OBJECTIVE: This paper presentsa safe and effective keyhole neurosurgery intra-operative planning framework for flexible neurosurgical robots. The framework is intended to support neurosurgeons during the intra-operative procedure to react to a dynamic environment. METHODS: The proposed system integrates inverse reinforcement learning path planning algorithm combined with 1) a pre-operative path planning framework for fast and intuitive user interaction, 2) a realistic, time-bounded simulator based on Position-based Dynamics (PBD) simulation that mocks brain deformations due to catheter insertion and 3) a simulated robotic system. RESULTS: Simulation results performed on a human brain dataset show that the inverse reinforcement learning intra-operative planning method can guide a steerable needle with bounded curvature to a predefined target pose with an average targeting error of 1.34 ± 0.52 (25 th = 1.02, 75 th = 1.36) mm in position and 3.16 ± 1.06 (25 th = 2, 75 th = 4.94) degrees in orientation under a deformable simulated environment, with a re-planning time of 0.02 sec and a success rate of 100%. CONCLUSION: With this work, we demonstrate that the presented intra-operative steerable needle path planner is able to avoid anatomical obstacles while optimising surgical criteria. SIGNIFICANCE: The results demonstrate that the proposed method is fast and can securely steer flexible needles with high accuracy and robustness.


Assuntos
Algoritmos , Agulhas , Encéfalo/cirurgia , Simulação por Computador , Humanos
3.
APL Bioeng ; 4(4): 041503, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33094213

RESUMO

Artificial intelligence (AI) is a major branch of computer science that is fruitfully used for analyzing complex medical data and extracting meaningful relationships in datasets, for several clinical aims. Specifically, in the brain care domain, several innovative approaches have achieved remarkable results and open new perspectives in terms of diagnosis, planning, and outcome prediction. In this work, we present an overview of different artificial intelligent techniques used in the brain care domain, along with a review of important clinical applications. A systematic and careful literature search in major databases such as Pubmed, Scopus, and Web of Science was carried out using "artificial intelligence" and "brain" as main keywords. Further references were integrated by cross-referencing from key articles. 155 studies out of 2696 were identified, which actually made use of AI algorithms for different purposes (diagnosis, surgical treatment, intra-operative assistance, and postoperative assessment). Artificial neural networks have risen to prominent positions among the most widely used analytical tools. Classic machine learning approaches such as support vector machine and random forest are still widely used. Task-specific algorithms are designed for solving specific problems. Brain images are one of the most used data types. AI has the possibility to improve clinicians' decision-making ability in neuroscience applications. However, major issues still need to be addressed for a better practical use of AI in the brain. To this aim, it is important to both gather comprehensive data and build explainable AI algorithms.

4.
Front Robot AI ; 6: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501085

RESUMO

Deep Brain Stimulation (DBS) is a neurosurgical procedure consisting in the stereotactic implantation of stimulation electrodes to specific brain targets, such as deep gray matter nuclei. Current solutions to place the electrodes rely on rectilinear stereotactic trajectories (RTs) manually defined by surgeons, based on pre-operative images. An automatic path planner that accurately targets subthalamic nuclei (STN) and safeguards critical surrounding structures is still lacking. Also, robotically-driven curvilinear trajectories (CTs) computed on the basis of state-of-the-art neuroimaging would decrease DBS invasiveness, circumventing patient-specific obstacles. This work presents a new algorithm able to estimate a pool of DBS curvilinear trajectories for reaching a given deep target in the brain, in the context of the EU's Horizon EDEN2020 project. The prospect of automatically computing trajectory plans relying on sophisticated newly engineered steerable devices represents a breakthrough in the field of microsurgical robotics. By tailoring the paths according to single-patient anatomical constraints, as defined by advanced preoperative neuroimaging including diffusion MR tractography, this planner ensures a higher level of safety than the standard rectilinear approach. Ten healthy controls underwent Magnetic Resonance Imaging (MRI) on 3T scanner, including 3DT1-weighted sequences, 3Dhigh-resolution time-of-flight MR angiography (TOF-MRA) and high angular resolution diffusion MR sequences. A probabilistic q-ball residual-bootstrap MR tractography algorithm was used to reconstruct motor fibers, while the other deep gray matter nuclei surrounding STN and vessels were segmented on T1 and TOF-MRA images, respectively. These structures were labeled as obstacles. The reliability of the automated planner was evaluated; CTs were compared to RTs in terms of efficacy and safety. Targeting the anterior STN, CTs performed significantly better in maximizing the minimal distance from critical structures, by finding a tuned balance between all obstacles. Moreover, CTs resulted superior in reaching the center of mass (COM) of STN, as well as in optimizing the entry angle in STN and in the skull surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...